Kastorgroup.ru

Кастро ГРУПП
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Коэффициент светопропускания стеклопакетов

Как выбирать стеклопакет?

На первый взгляд стекла почти не отличаются внешне, однако современные стеклопакеты многое умеют и существенно отличаются по своим свойствам.

Вот основные задачи, которые решают стеклопакеты:

1. Сохранение тепла в помещении
Такие стеклопакеты называют также теплосберегающими или энергосберегающими. Добиться высоких показателей теплоизоляции можно за счет дополнительных стекол и специального напыления оксидов серебра. Напыление прозрачно, расположено внутри стеклопакета на внутреннем стекле но отражает тепло внутрь помещения, препятствуя его выходу наружу.
Свойство сохранения тепла измеряется коэффициентом сопротивления теплопередаче. Здесь приведено значение для различных стеклопакетов:

СтеклопакетФормула стеклопакетаСопротивление теплопередаче Ro, м 2 * 0 С/Вт
Однокамерный (2 стекла) без напыления4*16*40,36
Однокамерный (2 стекла) с энергосберегающим напылением4*16*4И0,59
Двухкамерный (3 стекла) без напыления4*10*4*10*40,53
Двухкамерный (3 стекла) с напылением4*10*4*10*4И0,64


2. Защита от жары летом

Для защиты от жары летом на внешнем стекле наносится специальное напыление. Оно бывает только солнцезащитным либо совмещает в себе 2 свойства: защита от выхода тепла из помещения и проникновения солнечного тепла внутрь. Стеклопакеты, обладающие двумя свойствами, называют мультифункциональными.

Солнцезащитные стекла обладают зеркальным эффектом снаружи и могут также иметь различные оттенки для индивидуального дизайна фасада Вашего дома. Также, солнцезащитные стекла отличаются по степени защиты от жары и степени затенения помещения.

Характеристики солнцезащитных стекол:

— Коэффициент светопропускания LT. Чем он выше, тем больше света будет в помещении.

— Коэффициент пропускания солнечного тепла, SF. Чем он выше, тем меньше солнцезащита. Низкий показатель характеризует наиболее сильную солнцезащиту.

Сравнение стеклопакетов по показателям энергосбережения, солнцезащиты и светопропускания:

СтеклопакетФормула стеклопакетаОттенок стекла на фасаде зданияСопротивление теплопередаче Ro, м 2 * 0 С/ВтСветопропускание LT,%Пропускание солнечного тепла SF,%
Однокамерный (2 стекла) с энергосберегающим напылением4*16*4ИНейтральный0,597861
Мультифункциональный со стеклом ClimaGuard Solar4CGS*16*4Нейтральный0,596642
Мультифункциональный со стеклом ClimaGuard Solar Bronze4CGS Bronze*16*4Бронза0,574130
Мультифункциональный со стеклом ClimaGuard Solar Silver4CGS Silver*16*4Серебро0,573527
Мультифункциональный со стеклом ClimaGuard Solar Green4CGS Green*16*4Зеленый0,574030
Мультифункциональный со стеклом ClimaGuard Solar Blue4CGS Blue*16*4Синий0,533932

4. Шумоизоляция

Пластиковые окна защищают от шума лучше старых деревянных за счет герметичности створок. Если Вы живете неподалеку от автомагистралей или других источников шума, Вам стоит заказать стеклопакет с дополнительной шумоизоляцией. Наиболее надежно защищает от шума стеклопакет со стеклом триплекс. Оно состоит из двух стекол, склеенных между собой специальной пленкой: пленка гасит звуковые волны, обеспечивая отличную шумоизоляцию.

5. Взломобезопасность

Обычное стекло легко разбить, в этом плане оно небезопасно как с точки зрения проникновения извне, так и для хозяев: стеклом можно поранится при случайном разбивании. Но есть стекло с антивандальными свойствами. Это все тот же триплекс — разбить его гораздо труднее, кроме того, при разбивании оно лишь трескается, оставаясь скрепленным пленкой. Поэтому оно безопасно для владельцев и защищает дом от непрошенных гостей.

Мы производим стеклопакеты с мультифункциональным триплексом. Такой стеклопакет сочетает в себе все вышеперечисленные свойства: энергосбережение, защиту от жары, шумоизоляцию и ударопрочность.

Технические характеристики

По ГОСТ 248-2014 стеклопакеты клееные строительного назначения соответствуют следующим характеристикам и требованиям

Характеристики

По нормам ограничения пороков внешнего вида каждое стекло в стеклопакете должно соот­ветствовать требованиям, указанным в нормативных документах на применяемые виды стекла.

Стеклопакеты должны иметь ровные кромки и целые углы. Щербление края стекла в стекло­пакете, незашлифованные сколы, выступы края стекла, повреждение углов стекла не допускаются.

По согласованию изготовителя с потребителем в договоре устанавливают вид кромки (необрабо­танная или обработанная). Рекомендуется использовать стекло с обработанной кромкой. При примене­нии закаленного или термоупрочненного стекла кромку обрабатывают до его упрочнения.

Внутренние поверхности стекол в стеклопакетах должны быть чистыми, не допускаются загрязнения (следы пальцев рук, герметик, надписи, пыль, ворсинки, масляные пятна и т. д.). Допускают­ся точечные загрязнения, по своим размерам не превышающие допускаемые пороки внешнего вида для исходного стекла, при этом общее количество пороков стекла и загрязнений должно соответствовать требованиям нормативных документов на исходное стекло.

Требования к герметизации стеклопакетов

Каждый герметизирующий слой (первичный и/или вторичный) в стеклопакетах (в т. ч. в мес­тах угловых соединений) должен быть сплошными, без разрывов и нарушений целостности. На границе первого и второго слоев герметизации не должно быть видно дистанционную рамку. Не допускаются наплывы герметика в наружном герметизирующем слое (превышающие допуск на размер стеклопа­кета).

В стеклопакетах допускается выступание первичного (нетвердеющего) герметика (бутила) внутрь камеры стеклопакета не более 2 мм.

В двухкамерных стеклопакетах допускается смещение дистанционных рамок относитель­но друг друга. При этом допуск устанавливается в договоре поставки и не должен быть более 3 мм для стеклопакетов прямоугольной формы и не более 5 мм для стеклопакетов непрямоугольной формы.

Стеклопакеты должны быть герметичными.

Оптические искажения

Оптические искажения стеклопакетов (кроме стеклопакетов, изготовленных с применени­ем узорчатого, армированного или моллированного стекла, стекла с коэффициентом пропускания света менее 30 %) в проходящем свете при наблюдении экрана «кирпичная стена» под углом менее или рав­ным 30° не допускаются.

Допускается по согласованию изготовителя с потребителем устанавливать требования коптическим искажениям стеклопакетов (кроме стеклопакетов, изготовленных с применением узорчатого, арми­рованного или моллированного стекла) в отраженном свете.

На стеклопакетах допускаются радужные полосы (явление интерференции), видимые под углом менее 60° к плоскости стеклопакета.

Точка росы стеклопакетов должна быть не выше минус 45 °С. Для стеклопакетов морозостой­кого исполнения точка росы должна быть не выше минус 55 °С.

Стеклопакеты должны быть долговечными (стойкими к длительным циклическим климати­ческим воздействиям). Долговечность стеклопакетов должна составлять не менее 20 условных лет эксплуатации.

Объем начального заполнения стеклопакета газом должен составлять не менее 90 % объе­ма межстекольного пространства стеклопакета.

Требования к звукоизоляции стеклопакета с учетом конкретных условий эксплуатации уста­навливают при наличии требования потребителя.

Требования по сопротивлению теплопередаче стеклопакета с учетом конкретных условий эксплуатации устанавливают при наличии требования потребителя.

Требования к оптическим характеристикам стеклопакета (коэффициент направленного пропускания света, коэффициент пропускания солнечного излучения и т. д.) с учетом конкретных усло­вий эксплуатации устанавливают при наличии требования потребителя.

Требования к материалам

Материалы и комплектующие детали, применяемые для изготовления стеклопакета, должны соответствовать требованиям настоящего стандарта и нормативным документам на исходные материалы и комплектующие изделия.

Для изготовления дистанционных рамок применяют готовые профили из алюминиевых, стальных нержавеющих сплавов, стеклопластиковые или металлопластиковые профили. Рекомендует­ся изготавливать дистанционные рамки методом гнутья, собранные на линейных соединителях (для обеспечения лучшей герметичности стеклопакета), а также применять рамки с терморазрывом. Коли­чество стыков не регламентируется.

В случае изготовления дистанционной рамки методом сборки из прямолинейных элементов и угол- ков все стыки между элементами рамки должны быть тщательно заполнены нетвердеющим герметиком (бутилом).

Допускается изготавливать дистанционные рамки из других материалов при условии обеспечения выполнения требований к стеклопакетам, установленных в настоящем стандарте, и проверки возмож­ности транспортирования, хранения и эксплуатации стеклопакетов с этими рамками в условиях и конструкциях, предусмотренных настоящим стандартом.

В дистанционных рамках, имеющих перфорированные (дегидрационные) отверстия со стороны межстекольного пространства, размер этих отверстий должен быть меньше диаметра гранул влагопоглотителя.

Допуски на геометрические размеры и отклонения от формы дистанционных рамок должны обес­печивать выполнение требований к размерам, форме и герметичности стеклопакетов.

При изготовлении стеклопакетов в качестве влагопоглотителя применяют синтетический гранулированный цеолит без связующих веществ (молекулярное сито), которым заполняют полости дистанционных рамок. Размеры гранул влагопоглотителя должны быть больше, чем дегидрационные отверстия в дистанционной рамке. При заполнении стеклопакета инертными газами размеры пор во вла- гопоглотителе должны быть менее 0,3 мкм.

Эффективность влагопоглотителя, определенная по методу повышения температуры, должна быть не менее 35 °С. В спорных вопросах производят испытания по определению влагоемкости влаго­поглотителя по методикам, утвержденным в установленном порядке.

Порядок заполнения дистанционных рамок влагопоглотителем и его контроль устанавливают в технологической документации, в зависимости от размеров стеклопакетов и используемых герметиков. При этом заполнение влагопоглотителем должно быть не менее 50 % объема дистанционных рамок.

При применении в стеклопакетах термопластичных рамок и дистанционных лент с внедренным в массу влагопоглотителем, эффективность влагопоглотителя не контролируют.

Для первичного герметизирующего слоя применяют полиизобутиленовые герметики (бутилы) (кроме стеклопакетов для структурного остекления). Для вторичного герметизирующего слоя приме­няют полисульфидные (тиоколовые), полиуретановые или силиконовые герметики. В стеклопакетах для структурного остекления в качестве наружного герметизирующего слоя применяют структурные силико­новые герметики, осуществляющие дополнительные несущие функции.

Применяемые герметики должны соответствовать требованиям ГОСТ 32998.4 по показателям, указанным в ГОСТ 32998.6 для каждого герметизирующего слоя, и иметь адгезионную способность к стеклу и дистанционной рамке и прочность, обеспечивающие требуемые характеристики стеклопакетов в рабочем диапазоне температур. Применяемые герметики должны быть совместимы между собой и с герметиками, применяемыми при установке стеклопакетов в строительные конструкции. Не допускается взаимное проникновение герметиков и химические реакции между ними.

Читать еще:  Перегородки алюминиевые со стеклопакетом

Для изготовления стеклопакетов должны применяться герметики, отвечающие гигиеническим тре­бованиям, установленным в санитарных нормах и правилах, утвержденных в установленном порядке.

Для изготовления стеклопакетов применяют стекла толщиной не менее 3 мм.

При применении стекла с мягким покрытием (не стойким к внешним воздействиям) кромка по всему периметру стекла должна быть очищена от покрытия на 8—10 мм (на ширину герметизирующего слоя). В случае если очищенная от покрытия кромка по периметру стекла не закрывается рамами, то внешний вид согласовывается изготовителем с потребителем на образцах.

Допускается не снимать покрытие по кромке стекла, если это указывается производителем стекла с покрытием.

В случаях, когда в стекпопакетах для наружного остекления применяют неупрочненное стек­ло (в том числе многослойное), его коэффициент поглощения солнечного излучения должен быть не более 50%. Допускается вместо коэффициента поглощения солнечного излучения использовать при проектировании стеклопакетов коэффициент поглощения света стеклом. Для неупрочненного стекла (в том числе многослойного) он должен быть не более 25 %. В случае если один критерий выполняется, а другой нет, то применяется коэффициент поглощения солнечного излучения.

Стекло с более высоким коэффициентом поглощения света (или солнечного излучения) должно быть упрочненным.

Применяемые для изготовления стеклопакетов материалы должны быть проверены на совместимость и морозостойкость в процессе проведения испытания стеклопакетов на долговечность.

Стеклопакеты

Виды и характеристики. Стеклопакеты (ГОСТ 24866—81) состоят из двух или более листов стекла, соединенных между собой по периметру таким образом, что между ними образуются герметически закрытые полости, заполненные воздухом или другим газом; изделия полной заводской готовности, конструкция которых гарантирует герметичность воздушных прослоек. Предназначаются для остекления окон, витрин, верхних фонарей и балконных дверей общественных, производственных и жилых зданий.

По конструктивным особенностям и способам изготовления подразделяются на клееные (наиболее распространены), паяные и сварные; по числу слоев стекла (или образуемых ими воздушных прослоек) — на двух-, трех- и четырехслойные (одно-, двух- и трехкамерные) (рис. 38, а-в). Однокамерные применяют для остекления зданий при температуре наружного воздуха — 40°С, двухкамерные до —50°С.

Размеры стеклопакетов (мм): длина — 400. 2950, ширина — 400. 2650, толщина — не более 46. Максимально допустимая площадь стеклопакетов зависит от толщины используемых стекол и воздушных прослоек (табл. 79).

Таблица 79. Максимальная площадь стеклопакетов

Толщина воздушной прослойки, ммПлощадь, м 2 , при толщине стекол, мм
34566,58
Двухслойные
9
12
15
1,3
1,5
1,5
2,5
3,2
3,6
3,5
4,5
4,5

6
6,5

6,5
7

7,8
7,8
Трехслойные
9
12
1,3
1,5
2,5
3,2
3,5
4,5
4,5
6
6
6
7,8
7,8

Светотехнические качества (табл. 80) определяются числом, видом и толщиной используемых стекол и конструкцией стеклопакета.

Таблица 80. Коэффициенты светопропускания стеклопакетов, не менее

Вид стеклаТолщина стекла, ммКонструкция стеклопакета
двухслойныйтрехслойный
Оконное
Витринное неполированное
Термически полированное
Витринное полированное
Теплопоглощающее (один слой) + оконное Узорчатое бесцветное (один слой) + оконное Закаленное
Триплекс
3. 4
5. 6
6,5
5,5. 6,5
3. 4
3. 6
4,5. 6,5
4,5. 5,5
0,72
0,71
0,71
0,76
0,64
0,6. 0,64
0,71
0,72
0,61
0,6
0,6
0,66
0,54
0,54
0,6
0,61

Теплопоглощающие стекла располагают в наружных слоях стеклопакета. Наиболее эффективны теплоотражающие стекла с пленочным покрытием со стороны воздушной прослойки.

Технологические схемы. Стеклопакеты изготовляют на механизированных линиях максимальной годовой производительностью 500 тыс. м 2 .

Технологическая последовательность процессов: подготовка стекла, изготовление распорной рамки, нанесение на рамку нетвердеющей мастики, соединение рамки со стеклами, подпрессовка, нанесение на торцы пакета твердеющей мастики. Подготовка стекла включает его мойку и сушку на моечном конвейере.

Распорную рамку изготовляют из алюминиевой ленты в гибочном станке, где при помощи роликов, расположенных под разными углами, ей придают нужный профиль и автоматически разрезают ее на заданные отрезки; между краями профиля оставляют щель шириной 0,12 мм, через которую внутренняя полость профиля соединяется с полостью пакета.

Отрезки профиля на вибростанке заполняются предварительно высушенным поглотителем влаги — силикагелем или цеолитом. Рамку собирают с помощью пластиковых или металлических уголков или спаивают оловом на ультразвуковой установке. На станке на обе стороны рамки наносят нетвердеющую мастику слоем толщиной 1 мм и шириной 5. 6 мм. Стекло и рамку, поставленные вертикально, подают на конвейер, где их автоматически соединяют в пакет в вертикальном положении. Пакет поворачивают в горизонтальное положение и подпрессовывают. На торцы пакета наносят мастику, окончательно затвердевающую через 24 ч.

Нетвердеющая мастика между рамкой и стеклами создает условия независимости их температурных деформаций и паронепроницаемость соединений при герметизации. Долговечность пакетов в значительной степени определяется качеством герметизирующих материалов.

Термины и определения

Низкоэмиссионное покрытие

Низкоэмиссионное покрытие: Покрытие, при нанесении которого на стекло существенно улучшаются теплотехнические характеристики стекла (сопротивление теплопередаче остекления с применением стекла с низкоэмиссионным покрытием увеличивается, а коэффициент теплопередачи — уменьшается).

Солнцезащитное покрытие

Солнцезащитное покрытие: Покрытие, при нанесении которого на стекло улучшается защита помещения от проникновения избыточного солнечного излучения.

Коэффициент эмиссии

Коэффициент эмиссии (откорректированный коэффициент эмиссии): Отношение мощности излучения поверхности стекла к мощности излучения абсолютно черного тела.

Нормальный коэффициент эмиссии

Нормальный коэффициент эмиссии (нормальная излучательная способность): Способность стекла отражать нормально падающее излучение; вычисляется как разность между единицей и коэффициентом отражения в направлении нормали к поверхности стекла.

Солнечный фактор

Солнечный фактор (коэффициент общего пропускания солнечной энергии): Отношение общей солнечной энергии, поступающей в помещение через светопрозрачную конструкцию, к энергии падающего солнечного излучения. Общая солнечная энергия, поступающая в помещение через светопрозрачную конструкцию, представляет собой сумму энергии, непосредственно проходящей через светопрозрачную конструкцию, и той части поглощенной светопрозрачной конструкцией энергии, которая передается внутрь помещения.

Коэффициент направленного пропускания света

Коэффициент направленного пропускания света (равнозначные термины: коэффициент пропускания света, коэффициент светопропускания), обозначается как τv (LT) – отношение значения светового потока, нормально прошедшего сквозь образец, к значению светового потока, нормально падающего на образец (в диапазоне длин вол видимого света).

Коэффициент отражения света

Коэффициент отражения света (равнозначный термин: коэффициент нормального отражения света, коэффициент светоотражения) обозначится как ρv (LR) – отношение значения светового потока, нормально отраженного от образца, к значению светового потока, нормально падающего на образец (в диапазоне длин вол видимого света).

Коэффициент поглощения света

Коэффициент поглощения света (равнозначный термин: коэффициент светопоглощения) обозначается как av (LA) — отношение значения светового потока, поглощенного образцом, к значению светового потока, нормально падающего на образец (в диапазоне волн видимого спектра).

Коэффициент пропускания солнечной энергии

Коэффициент пропускания солнечной энергии (равнозначный термин: коэффициент прямого пропускания солнечной энергии) обозначается как τе (DET) – отношение значения потока солнечного излучения, нормально прошедшего сквозь образец, к значению потока солнечного излучения, нормально падающего на образец.

Коэффициент отражения солнечной энергии

Коэффициент отражения солнечной энергии обозначается как ρе (ER) – отношение значения потока солнечного излучения, нормально отраженного от образца, к значению потока солнечного излучения, нормально падающего на образец.

Коэффициент поглощения солнечной энергии

Коэффициент поглощения солнечной энергии (равнозначный термин: коэффициент энергопоглощения) обозначается как ае (EА) – отношение значения потока солнечного излучения, поглощенного образцом, к значению потока солнечного излучения, нормально падающего на образец.

Коэффициент затенения

Коэффициент затенения обозначается как SC или G – коэффициент затенения определяется как отношение потока проходящего через данное стекло солнечного излучения в диапазоне волн от 300 дог 2500 нм (2,5 мкм) к потоку солнечной энергии, прошедшей через стекло толщиной 3 мм. Коэффициент затенения показывает долю прохождения не только прямого потока солнечной энергии (ближняя инфракрасная область излучения), но и излучение за счет абсорбирующейся в стекле энергии ( в дальней области инфракрасных излучений).

Коэффициент теплопередачи

Коэффициент теплопередачи – обозначается как U, характеризует количество тепла в ваттах (Вт), которое проходит через 1 м2 конструкции при разности температур по обе стороны в один градус по шкале Кельвина (К), единица измерения Вт/(м2•К).

Сопротивление теплопередаче

Сопротивление теплопередаче обозначается как R – величина, обратная коэффициенту теплопередачи.

Светопропускание оконных конструкций и различные способы достижения нормативных результатов

В настоящее время на рынке России и стран СНГ появилось большое количество различных листовых стекол для строительства: прозрачные, окрашенные в массе, стекла с покрытиями (низкоэмиссионными, солнцезащитными, зеркальными, декоративными), многослойные стекла, закаленные стекла. Это разнообразие стекол позволяет решать различные архитектурные и проектные задачи: повышать архитектурную выразительность зданий и сооружений, разнообразить внешний вид городов, повышать безопасность эксплуатации зданий и сооружений, экономить топливо и энергию. В то же время ужесточились строительные нормативы по обеспечению естественной освещенности в зданиях, по сопротивлению теплопередаче. Поэтому требования к светопропусканию и теплоизоляции появились в новых стандартах на окна и стеклопакеты.

Читать еще:  Изготовление стеклопакетов больших размеров

Перед проектантами и изготовителями окон и светопрозрачных конструкций встала сложная задача одновременного удовлетворения большого числа требований, предъявляемых к остеклению заказчиками и действующими нормативами. Особую сложность этой задаче придает необходимость снижать стоимость остекления, чтобы уложиться в весьма скромные финансовые возможности заказчиков. Данный обзор освещает эту проблему только с одной стороны: как обеспечить необходимый коэффициент пропускания света при выполнении требований по теплоизоляции, безопасности, стоимости.

Для того, чтобы рассмотреть эту проблему необходимо вспомнить физику. На рисунке 1 она показана на примере стеклопакета. При проектировании остекления обычно рассматривают два вида излучения: видимый свет (длины волн от 380 нм до 780 нм) и солнечную энергию (длины волн от 300 нм до 2500 нм). При этом для каждого из них устанавливается три показателя: коэффициенты пропускания, отражения и поглощения. Сумма этих коэффициентов равна 1 для каждого из видов излучения. В большинстве строительных нормативов России и СНГ требования предъявляются в явном виде к пропусканию видимого света. В то же время, при использовании стекол с покрытиями или окрашенных в массе стекол необходимо учитывать их характеристики для солнечного излучения, поскольку они определяют возможность их эксплуатации в зданиях и сооружениях, — большое поглощение солнечной энергии может привести к разрушению стекол.


Рисунок 1. Пример стеклопакета

На рисунке 2 приведены спектры пропускания видимого света различными стеклами. На этом же рисунке приведена кривая весовых коэффициентов, которые используются при расчете интегрального коэффициента пропускания видимого света в соответствии со стандартом ИСО 9050. Из этой кривой следует, что спектральные коэффициенты пропускания на различных длинах волн входят в расчет с разными коэффициентами и наиболее важно пропускание на длинах волн близких к 550 нм. Из этого рисунка видна большая разница в светопропускании различных стекол и тот факт, что любые покрытия на стеклах снижают коэффициент пропускания света.

Важно также отметить, что даже формально одинаковые листовые стекла обладают различными коэффициентами светопропускания. На рисунке 3 приведены примеры спектров пропускания света листовых стекол марки М1 толщиной 4 мм различных стекольных заводов. На рисунке видна большая разница между ними. Рассмотрим, к чему она может приводить.

Коэффициент светопропускания остекления рассчитывается по формулам:

Для двойного остекления:

(1)

(2)

где: t1(l) — спектральный коэффициент пропускания наружного листа;
t2(l) — спектральный коэффициент пропускания среднего листа;
t3(l) — спектральный коэффициент пропускания внутреннего листа;
r1(l) — спектральный коэффициент отражения наружного листа, замеренный в направлении падающего излучения;
r’1(l) — спектральный коэффициент отражения наружного листа, замеренный в направлении противоположном направлению падающего излучения;
r2(l) — спектральный коэффициент отражения среднего листа, замеренный в направлении падающего излучения;
r’2(l) — спектральный коэффициент отражения среднего листа, замеренный в направлении противоположном направлению падающего излучения;
r3(l) — спектральный коэффициент отражения внутреннего листа, замеренный в направлении падающего излучения.

Для остекления с более чем тремя компонентами, соотношения аналогичные формулам 1-2 могут быть найдены при помощи мысленного разделения такого остекления на части, содержащие по два или три компонента.

В настоящее время, для удешевления остекления часто возникает желание применить вместо стекла марки М1 стекло марки М4, купить стекло подешевле. К чему это может приводить в остеклении, показано в таблице на примере листовых стекол толщиной 4 мм различных марок.

Таблица

Марка стеклаКоэффициент пропускания света стеклом, %Коэффициент пропускания света двухслойным остеклением, %Коэффициент пропускания света трехслойным остеклением, %
М1 (ГОСТ 111-90)8881,973,4
М4 (ГОСТ 111-90)8572,762,5
Наилучшее испытанное в ИЦ «Стекло»91,584,378,0
Наихудшее испытанное в ИЦ «Стекло»82,568,557,1
Требования к светопропусканию стеклопакетов общестроительного назначения ГОСТ 24866-99>=80>=72
Требования к светопропусканию стеклопакетов энергосберегающих ГОСТ 24866-99>=75>=68

Как видно из этой таблицы, разница в коэффициентах пропускания света листовых стекол одной толщины может достигать 9 %, при двухслойном остеклении — 16 %, при трехслойном остеклении — 21 %. Как уже отмечалось, покрытия на стекле снижают его коэффициент пропускания света, поэтому для «удержания» общего коэффициента пропускания стекла с покрытием в допустимых пределах и обеспечения нормативных коэффициентов пропускания остекления, покрытия надо наносить на стекла с высоким коэффициентом пропускания.

Учитывая, что в формулах 1, 2 коэффициенты пропускания стекол в остеклении практически равноправны, в случае применения одного из стекол с низким коэффициентом пропускания, остальные стекла лучше использовать с высоким коэффициентом пропускания, чтобы общий коэффициент пропускания остекления находился в заданных пределах.

Необходимо учитывать, что, чем больше толщина стекла, тем меньше его коэффициент светопропускания, поэтому в стеклопакетах надо толщину каждого стекла подбирать исходя из требований к их прочности и, по возможности, использовать более тонкие стекла, чтобы повысить общий коэффициент пропускания остекления. Кстати, они и более дешевые.

Ситуация с пропусканием солнечной энергии аналогична описываемой с пропусканием видимого света. Примеры спектров пропускания солнечной энергии различных стекол приведены на рисунке 4. Необходимо отметить, что кривая весовых коэффициентов для расчета общего пропускания солнечной энергии имеет многомодальный характер, поэтому сложно выделить область, которая наиболее сильно влияет на общий коэффициент пропускания. На рисунке 5 приведены примеры спектров пропускания солнечной энергии для листовых прозрачных стекол различных стекольных заводов. Как и в случае с видимым светом, видна большая разница между спектрами этих стекол, поэтому все вышеприведенные рассуждения по подбору стекол справедливы и в данном случае.

При нанесении покрытий на стекло, особенно низкоэмиссионных, качество покрытий проще обеспечить при большей их толщине, что приводит к снижению коэффициента пропускания стекла. На рисунке 6 приведены примеры спектров отражения различных стекол, используемые при расчете коэффициента тепловой эмиссии (чем больше коэффициент отражения, тем меньше коэффициент эмиссии). Нетрудно заметить, сравнивая этот рисунок с рисунком 4, указанную зависимость. Поэтому для нанесения низкоэмиссионных покрытий необходимо использовать стекла с высоким коэффициентом пропускания света.

В заключение, можно дать следующую рекомендацию: при проектировании остекления использовать стекла с известными оптическими характеристиками и подбирать их комбинации с помощью методов математического моделирования, чтобы удовлетворить пожелания заказчиков и требования нормативных документов. Необходимо помнить, что штрафные санкции и доброе имя стоят значительно дороже, чем разница в стоимости качественного и некачественного стекла.


Рисунок 2. Примеры спектров пропускания листовых стекол.


Рисунок 3. Примеры спектров пропускания листовых стекол различных стекольных заводов


Рисунок 4. Примеры спектров пропускания солнечной энергии различных стекол


Рисунок 5. Примеры спектров пропускания солнечной энергии листовых стекол разных заводов


Рисунок 6. Примеры спектров отражения для определения коэффициента тепловой эмиссии

Классификация стеклопакетов. Какие они бывают?

Выбор стеклопакетов нужно производить с учетом условий, в которых будут эксплуатироваться окна, чтобы, с одной стороны, получить наилучшую защиту от неблагоприятных внешних факторов: холода, уличного шума, солнечного излучения и т.п., а с другой – не переплачивать за характеристики, которые для вас не актуальны.

Итак какие же бывают стеклопакеты?

1. По количеству камер

Между каждыми двумя стеклами образуется пространство, называемое камерой. Стеклопакеты подразделяются на:

однокамерные (2 стекла)

двухкамерные (3 стекла)

— трехкамерные (4 стекла)

1.1.Стандарт – однокамерный стеклопакет

Самый распространенный (и самый дешевый) вариант стеклопакета – однокамерный. Например ширина стеклопакета 24 мм (4-16-4), при этом толщина одного стекла 4 мм, дистанционная рамка 16 мм, толщина второго стекла 4 мм. Установка стеклопакетов с одной камерой применяют для остекления балконов и лоджий, не отапливаемых помещений, а также, в целях экономии, на окна и балконные блоки (окно + балконная дверь), которые выходят на уже застеклённую лоджию или балкон.

Преимущества однокамерного стеклопакета:

— более легкая конструкция по сравнению с двухкамерным, и так как меньший вес дает меньшую нагрузку на оконную фурнитуру — срок службы такого окна дольше, чем окна с двухкамерным стеклопакетом;

— высокий коэффициент светопропускания и низкий коэффициент потери тепла;

— окна с однокамерными стеклопакетами стоят дешевле двухкамерных;

— однокамерного стеклопакет с теплоотражающим стеклом и заполнением его газом, при более выгодной цене по своим характеристикам аналогичен 2-х камерному.

1.2.Двухкамерный стеклопакет: когда нужна эффективность

Двухкамерный стеклопакет представляет из себя 3 стекла, общей шириной к примеру 32 мм (4-10-4-10-4), при этом толщина всех трех стекол по 4 мм, а дистанционная рамка между ними 10 мм. Данный вид стеклопакета является самым распространенным и оптимальным вариантом. В зависимости от условий эксплуатации окон и места расположения дома, квартиры стеклопакеты могут состоять из стекол различных характеристик: толщина, энергосбережение, цвет, ударопрочность и наличие внутренних раскладок (шпрос). По вашему желанию в одном стеклопакете всегда можно совместить высокие требования по энергосбережению, шумоизоляции, ударопрочности и дизайну.

Читать еще:  Как отличить энергосберегающий стеклопакет от обычного

2. По ширине

Ширина стеклопакета — это полная ширина блока вместе со стеклянной и воздушной частью. Встречаются стеклопакеты шириной — 14, 16, 18, 20, 22, 24, 28, 32, 36, 42, 44 мм и др.

С ростом межстекольного пространства до

16 мм (в каждой камере) теплоизоляционные характеристики стеклопакета растут, но свыше 24 мм начинают ухудшаться, в силу роста конвективной теплопередачи в межстекольном пространстве. Для двухкамерного стеклопакета из обычного стекла с воздушным наполнением оптимальной формулой является 4-16-4-16-4 (44 мм)

Формула стеклопакета — стекло (марка)–дистанция–стекло (марка). Формула СП всегда начинается с внешнего стекла, обращённого на улицу.

Маркировка стеклопакетов:

Маркировка стекол:

M — Простое оконное стекло, произведенное методом вытяжки.

F — Стекло произведенное флоат-способом.

K — Стекло с твердым низкоэмиссионным покрытием.

I — Стекло с мягким низкоэмиссионным покрытием.

S — Окрашенное в массе стекло

Pl — Стекло с нанесенным на него пленочным теплоотражающим покрытием

Маркировка газов:

Воздух Пробел по умолчанию

SF6 Гексафторид серы

Пример: 8M1-16-4M1-12Ar-4K: 8 мм стекло марки М1 — 16 мм возд. дистанция — 4 мм стекло М1 — 12 мм дистанция, заполнение аргон — 4 мм К-стекло.

3. По типам применяемого стекла

  1. Энергосберегающие
  2. Мультифункциональные
  3. Шумоизоляционные
  4. Защитные (ударостойкие)
  5. Безопасные
  6. Солнцезащитные
  7. Самоочищающиеся
  8. Декоративные

3.1. Энергосберегающие стеклопакеты помимо обычного стекла, включает в себя низкоэмисионноное стекло и действует по принципу теплового зеркала.

Теплосберегающий стеклопакет снижает теплопотери более чем на 50% по отношению к обычному стеклопакету, обладает высокой светопропускной способностью и отражает ультрафиолетовое излучение.

Определить, есть ли в стеклопакете энергосберегающее стекло довольно просто. Зажгите спичку или зажигалку и поднесите ее к стеклопакету. Посмотрев под небольшим углом на отражение пламени от стекла, вы увидите четыре отражения. Если все отражения имеют один и тот же оттенок — в стеклопакете нет энергосберегающего стекла. Если одно из отражений имеет отличающийся от других оттенок, то обратите внимание на то, где оно находится. Если вторым со стороны помещения, то стеклопакет установлен правильно и энергосберегающее стекло сохранит тепло в доме.

Точно также можно проверить наличие энергосберегающего стекла и в двухкамерном стеклопакете. Только вместо четырех отражений вы увидите шесть. Если все шесть отражений будут иметь один оттенок — в стеклопакете установлены обычные стекла и данный стеклопакет не соответствует требованиям строительных норм.

3.2. Мультифункциональный стеклопакет (солнцезащитный и энергосберегающий). Такой стеклопакет содержит специальное стекло с многослойным напылением. По сравнению с обычным, мультифункциональный стеклопакет:

— летом отражает тепловое излучение солнца до 61% (спасает от жары), пропуская световые волны. То есть у Вас дома будет приятная прохлада и солнечный свет.

— зимой мультифункциональный стеклопакет сохраняет более 50% тепла. Тепловая энергия от источников обогрева отражается обратно в комнату. За счет эффекта «теплового зеркала» Ваши затраты на отопление уменьшаются.

3.3. Шумоизолирующий стеклопакет — это стеклопакет с разными по толщине стёклами. Благодаря этому окна обладают повышенными шумопоглощающими свойствами. Обычные стеклопакеты, состоят из стёкол толщиной 4 миллиметра. Шумоизоляционными может считаться уже, например, однокамерный стеклопакет из одного стекла толщиной 4 миллиметра и второго — 6 миллиметров.

«Асимметричный» стеклопакет (с разными расстояниями между стеклами) также снижает уровень шума. В подобных стеклопакетах применяют стекла триплекс, что значительно улучшает шумоизоляцию, т.к. поливинилбутираловый слой (ПВБ-слой) в составе триплекса является отличным звукопоглотителем.

Для максимального погашения звукового резонанса также необходимо обеспечить герметичность стыков и плотный прижим створок.

Насколько эффективно шумоизоляционный стеклопакет справляется с уличным шумом?

Норма зашумленности помещения по ГОСТу не должна превышать 40-45 ДБ.

Для наглядности, сравним: уровень звукового давления на тихой городской улице — 40 ДБ, улице со средним движением — 60 ДБ, с интенсивным движением — 80 ДБ.

Шумоизоляционные окна снижают уровень шума на 30-40 Дб

3.4 Защитный (ударостойкий) стеклопакет

При изготовлении ударостойких стеклопакетов применяется ламинированное стекло «триплекс». Триплекс (от лат. triplex — тройной) — многослойное стекло (два или более органических или силикатных стекла, склеенные между собой специальной полимерной плёнкой или фотоотверждаемой композицией, способной при ударе удерживать осколки). Представляет собой многослойный блок, обладающий защитными свойствами. Эти стекла обеспечивают защиту помещений при проникновении на объекты с использованием молотка, топора и др. Принимаются под охрану как пассивное средство защиты, альтернатива решеткам.

При разрушении стекла, осколки не разлетаются, а остаются на склеивающем слое. Поврежденный триплекс не требует незамедлительной замены и продолжает функционировать даже при серьезных ветровых и ливневых нагрузках. Пленка защищает людей от осколков при несчастных случаях, взрывах, стихийных бедствиях.

Область применения таких стеклопакетов/стекол достаточно обширна: автомобильные стекла в обязательном порядке покрыты защитной пленкой; стеклянные крыши зимних садов; стеклопакеты в окнах небоскребов; большие по площади витрины, входные группы в общественных помещениях с большой проходимостью и т.д.

3.5 Безопасный (безосколочный) стеклопакет

Для изготовления безопасного стеклопакета используется закаленное стекло, которое в 4-5 раз прочнее обычного.

Закаленное стекло – этот тип стекол подвергается специальной термической обработке, или, проще говоря, закалке. В результате этого процесса возникают внутренние распределенные напряжения, благодаря чему значительно увеличивается механическая прочность покрытия, увеличиваются ударопрочные функции и достигается безопасный характер разрушения.

Закаленное стекло прочнее классического в 5-7 раз. При повреждении целостности оно распадается на множество мелких осколков с притупленными краями, а обычные стекла распадаются на осколки с длинными и острыми клиновидными кромками, которые могут нанести значительный вред здоровью человека.

Качество закаленного стекла в России строго регламентировано ГОСТом:

Стекло при разрушении не должно образовывать крупные (более 3 см2) осколки. Осколки не должны иметь заостренных концов; угол, образованный двумя смежными сторонами, не должен быть менее 45 градусов, при этом длина осколков не должна превышать 75 мм, а число осколков длиной от 60 до 75 мм не должно превышать пяти. (ГОСТ 30698-2000 «Стекло закаленное строительное: Технические условия»).

3.6. Солнцезащитный стеклопакеты

В этом стеклопакете используется тонированное стекло, которое обладает всеми обычными свойствами стекла за исключением светопроницаемости. Как правило, тонированные стеклопакеты используют в помещениях с солнечной стороны либо в декоративных целях.

СП солнцезащитные могут быть изготовлены с использованием:

  • Стекол, окрашенных в массе;
  • Стекла с нанесением оксидно-металлического покрытия (рефлективные стекла) с зеркальным отражением различной цветовой гаммы;
  • Стекол с тонирующей пленкой.

Окрашенные в массе стекла могут быть серого, голубого, зеленого и бронзового цвета.

Применение солнцезащитных стеклопакетов не только обеспечивает эффективную солнцезащиту помещений и снизит утомляемость от воздействия солнечного фактора, но и придаст помещению и зданию оригинальный архитектурно-художественный облик.

3.7.Самоочищающиеся

Самоочищающиеся стекла для металлопластиковых окон — новинка. Pilkington Activ– это обычное стекло со специальным покрытием на внешней поверхности, обладающим двойным действием. При попадании на стекло дневного света его покрытие сначала разрушает любые органические загрязнения, а потом дождевая вода, равномерно стекая вниз, смывает грязь со стекла.

Покрытие не влияет на прочностные характеристики стекла, и только снижает светопропускание на 5-6% по сравнению с обычным прозрачным стеклом. Под некоторыми углами стекло имеет несколько больший, чем обычное стекло, зеркальный эффект с небольшим синеватым оттенком, что придает ему более чистый и привлекательный вид. Покрытие имеет хорошую устойчивость к царапинам и длительный срок службы, и в большинстве случаев, с ним можно обращаться как с обычным флоат-стеклом.

3.8. Декоративные стеклопакеты.

Нельзя говорить о стеклопакетах и обойти вниманием декоративные раскладки. Применение декоративных раскладок придает окнам эксклюзивность, фасаду здания индивидуальный облик, подчеркивает достоинства архитектурного замысла.

Различают два вида раскладок: внешнюю и внутреннюю.

Внутренняя декоративная раскладка в стеклопакете (шпроссы) — это декоративный профиль, размещенный внутри стеклопакета. Изготавливают раскладки из алюминиевого профиля различной ширины (8-18-24-26-40 мм) и окрашиваются в широкую цветовую гамму. Шпроссы находятся внутри стеклопакета и абсолютно не мешают мыть окна.

Внешняя декоративная раскладка (фальш-переплет) наклеивается с наружной стороны стеклопакета или зеркально с двух сторон. Обычно выбирается в цвет профиля. Фальш-переплет имитирует разделение створки/окна на части. Изготавливается из ПВХ-профиля и приклеивается при монтаже окон.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector